If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-8+8=0
We add all the numbers together, and all the variables
x^2-3x=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| 13+2(1−u)=8u−5(u+7) | | 28(k+6)=448 | | 8x−3=−19+6x | | 120-c=61 | | 90=57+x | | 10t-30=380 | | 42x-50=x | | Z+1/9+1=2z+3/6 | | 10(v+4)-4v=3(2v+4)-16 | | 36=3x-27 | | 8(3x-4)-20x=-28 | | 2(2y-5)=8 | | {3n-3}=15-n+18 | | y-229/21=19 | | X²-11x-104=0 | | 79+25r=854 | | x+6/5=x+8/6 | | 16=176/k | | 180=8x+4=10x-6 | | 8h+13=77 | | j/6+55=59 | | (81^-4)/(729^(2-x))=9^4x | | 33=-3(x-9) | | 22-s=7 | | 8y+3=3y–12 | | 180-2x=90+x | | x+7+2x+11=90 | | 81^-4/724^2-x=9^4x | | 17-2x-5=28 | | 3h-2=22 | | (19-m)/7=-5 | | 2x+210=4x+140 |